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Abstract 

It is shown how ghost propagation in the Hamiltonian formulation of Chern-Simons Field 
Theory is the physics underlying the Kontsevich integrals: the expectation values of Wilson loops 
computed to the appropriate order in Perturbation Theory to describe the topology of a knot. 
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1. Knot Theory has been always a branch of Low Dimensional Topology strongly 
influenced by Physics. One of most the recent topics of research into the area is the 
study of graph cohomology which, inspired by Singularity Theory, provides a framework 
for understanding the structure of knot invariants through the work of Vassiliev and 

Kontsevich, see [ 1 ] and references quoted therein. 

A brief summary of their construction is as follows: extend the space of knots to 
include immersions of S 1 in an oriented three-manifold M 3 with self-intersections. 

Given a functional constant on the connected components of the extended knot space, 
with a grading determined by the number of self-crossings, define the boundary operator 

acting on the knot invariant V by 

v v ( c . )  = v ( c , + _ l )  - v ( c ~ _ l ) .  

Here, V(C.) is the invariant computed for the knot Cn with n self-intersections and 
the XT-operation consists in taking the difference of the values of V for the knots C~_ l, 
differing from C, by the fact that the i-sime self-intersection has been solved in a 
under(over)-crossing. It is obvious how to iterate the process to obtain the xTm-operator 
and because differences are cousins of derivatives it is immediately seen that the Leibnitz 

rule is satisfied. 
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Fig. 1. A cord diagram associated with a knot with self-intersections. 

A knot invariant V is called a Vassiliev invariant of type n, an invariant of finite type, 
if its (n + 1)th "derivative" vanishes identically: ' f~n+l  V -- 0. The nth coefficients of 
the Conway, HOMFLY, Jones and Kauffman polynomials are examples, as explained 
in [ 1 ] using the skein relations, of Vassiliev invariants. There is however a general 

procedure for constructing Vassiliev invariants: to any knot with n self-intersections one 
can associate a cord diagram of degree n, Fig. 1. A cord diagram is an oriented circle 
with finitely many cords marked on it modulo orientation-preserving diffeomorphisms 
of the circle: the degree is the number of cords. A weight system of degree m is a 
functional on the space of cord diagrams of degree m such that the following properties 
are satisfied: 
(i) If D is a cord diagram with an isolated cord, not intersecting any other cord in D, 

then W(C)  = O. 
(ii) If four diagrams A, B, C, D differ as shown in Fig. 2, the dotted areas are the 

same for all of them, and hence: 

W ( A ) -  W ( C ) =  W ( B ) -  W(D)  (o) 

Vassiliev invariants are expressed in terms of weight systems. If the functionals on the 
extended loop and cord diagram spaces take values in ~, 
(i) Vassiliev invariants of type n are given by the weight system of degree n. 

(ii) Vice versa, a weight system of degree n is defined from a Vassiliev invariant of 

type n. 
The strategy is thus to construct a weight system for cord diagrams. There are essentially 

two aspects: 
(a) Algebraic. Lie algebraic invariants are associated with any cord diagram according 

to the "Feynman Rules" of Fig. 3. The dimension of the representation R running on 
the external circle, for instance, corresponds to the vacuum diagram. The invariant 
for the closed diagram with an isolated cord is the quadratic Casimir of the adjoint 
representation, the representation propagating along the cord and so on. Although 
it is possible to define trivalent vertices for this representation by means of the Lie 
bracket, we shall not need to consider this kind of diagrams here. 

© © © © 
A B C D 

Fig. 2. Cord diagrams to be identified by the four term relation. 
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Fig. 3. Feynman rules for a Lie algebra. 

(b) Differential topology. The diagrams are also characterized by the locations of  the 

vertices and they will be classified by the topology of  the configuration space of  n 

points in R '~ C. Because a knot is the closure of  a braid we shall consider cord 

diagrams as drawn in Fig. 4a, where the arrows carrying the R representation are 

directed upwards on a perpendicular axis, labelled by t, to C. We need a complex 

valued form to on C1 x R1 ® C2 X R2-diagonal to characterize the topology of  that 

space of  diagrams such that: 

i. it generates a cohomology class: [to] =/= 0, 

ii. there is an involution o- : Cl x Re ~ C2 X R2 for which to = -o-*to; 

iii. tol2 A to23 + (cyclic permutations)= 0. This is the four term relation (0).  

There is a unique solution satisfying those properties, namely, 

to = d l n ] z  - tol A d O ( t -  s) , 

where 0 is the Heaviside step function; from this we can construct the formal 

Knizhnik-Zamolodchikov connection O = ~i<j  f'~ijtoij for the set of  diagrams in 

Fig. 4 contracting with a generating element Oij of  the algebra defined by the 

product in Fig. 4b. It is easy to prove that dO  + O A O = 0, so that 12 is a flat 

connection with holonomy: 

(a) (b) 

~} ij 

(c) 

Fig. 4. Cord diagrams with n-ordered upward pointing arrows. 
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Fig. 5. Morse knot and its cord diagram. 

Hola(B)  b = ~ f B*O(tm)'" "B*O(tm). 
m=Oa<_ti <_... <_t,, <_b 

Kontsevich's clever idea was to apply this framework to Morse knots, knots for which t is 
a Morse function, as in Fig. 5, and define integrals as above, allowing for ascending and 
descending arrows and including a combinatorial factor D, the Lie algebraic invariant 
due to the associated cord diagram: 

i z 'z'-'°']. 
tl<...<t,, (Zi,toi) i=1 Zi (-Oi J 

The pairings (Zi, tOi) are taken at values of t which are not critical points of C and 
( - 1 )  ari accounts for the relative orientation of the corresponding strands. It happens 
that the Kontsevich integrals provide an explicit expression for a weight system and Vas- 
siliev invariants and they also characterize the different types of Morse knots. Moreover, 
the combinatorics of the graphs are the same as the combinatorics arising in Pertur- 
bative Chern-Simons Field Theory [2]; the challenge is now to understand Vassiliev- 
Kontsevich invariants in terms of the physics of Chern-Simons systems. 

2. To address this issue is the aim of this work. Given the strange partition of ~3  

as the cross product of ]~ by the complex plane C necessary to define Kontsevich 
integrals, the natural setting is the Hamiltonian formulation of Chern-Simons Theory. A 
very practical, and pictorial, tool to handling Perturbation Theory is the use of Feynman 
Rules and although one of its main advantages is the possibility of covariant formulation, 
by sticking to the Hamiltonian formalism we are forced to deal with non-covariant 
Feynman diagrams. In this way the instantaneous propagation of Faddeev-Popov ghosts 
is the physical representation of the building blocks of the Kontsevich integrals. 

We start from the Chern-Simons Lagrangian 

/z 2 
L~cs = --zeqkTr[OAjAk + ~AiAjAk] (1) 

g0 
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defined on the space of  connections A i = A~T a of  a S U ( N )  flat bundle over 1R 3. Here the 
= 1 ,¢iab T a are anti-hermitian S U ( N )  generators with [Ta,T b] = fabcTc and TrTaT b - ~ v  

and k~ = /~2 /~ ,  the quotient of  the topological mass by the square of  the coupling 

constant, is a dimensionless parameter which for topological reasons will be k /4~  with 
k integer. Denoting by Greek indices c~,/3 . . . .  spatial components and renaming a~ = A~ 
for a = l, 2, we wri te /2cs  in the so-called generalized Hamiltonian form of  dynamics, 

/ :cs = - /*2 Tr [ Ooa~e~a~ - Aoe~13 F ~  ] , 

F,I~ = &,al3 - O~a~ + [ a~, al3 ] . (2)  

H~(x)  = e,~alz(X)l.t g and a~(x) are canonically conjugated variables whereas the 
Lagrange multiplier Ao(x) enforces the constraint 

G(x)  = e~BF~(x) .  

By introducing the Poisson brackets 

{ H a ( x ) ,  a}(y)  } = 6~e6~ba (2) (x  - y)  

it is easy to check that the constraints close under the SU(N)  algebra 

{ C " ( x ) ,  Ch(y) } = f a b c c c ( x ) • ( 2 ) ( X  -- y) .  

To define the Hamiltonian formalism, even when the Hamiltonian is zero as in this case, 

we add subsidiary conditions such that det l[{S(x),C(y)}[[ is different from zero. For 

the Coulomb gauge 

Sa(x) = #23,~aa(x) = 0 

we have: 

det [[ {S ~ ( x ) ,  C b (y) }11 

= det II [/zo2 (--6ab~72 + fabcac( t, X)Oa) 6(2) (X -- y) ][I. 

3. The Functional Integral defining the quantum dynamics is [ 3 ] 

Z = N f 7~aT~rr~DAo"6(S)" det II {s, C}ll"6(Tr - *a )"  

x e x p ( - i l z 2 o f  d3x T r ( Ooa~r~ - Ao C) )  , 

where we integrate £ c s  in a "normalizing box" of volume L2T, i.e. we replace R 3 
by T 2 x S l thus obtaining an infrared cut-off. We shall express in the usual way the 
determinant of  M ab = { S  a, C b} as a Berezin integral on Grassman fields, the Faddeev-  

Popov ghosts, 
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z, s, w)II = . [  det IIMab(t, 79~a( z )I~( z ) 
× e x p ( i / ~ f d t f d s f d 2 z f d 2 w [ ¢ a ( Z ) ( M a b ( t , s , z , w ) ) ' b ( z ) ] ) ,  

where M is 

Mab(t, s, Z, w) = t3 (2) (Z -- w) (--6ab6(t -- S)X7 2 + eabcac (t  Z )az ) 
d Ol\  ~ 

In Yang-Mills theory one can skip dealing with the troublesome "&" functionals replac- 

ing them by gauge-fixing terms in such a way that in our case, after integrating over 

A0, which yields another "t~(C)", £cs  would be replaced by 

F 12cs + L;~F + / ; C  -- --/x0 z Tr [e,~a~OoaB + -~ • 

There is then one "unphysical" gluon propagating in a non-covariant way, three and four 

gluon vertices, instantaneous Faddeev-Popov ghosts and a triple gluon-ghost vertex. 

In this simpler setting we can solve the equations C = S = 0 and take into account 
the "&"-functionals by reducing the integration domain to the solution manifold of those 

equations. In the topological limit when ~1 and 12 tend to zero the generating functional 

of the Green functions is: 

/ / a o} l [ j ]  = N iDq ID~ID~ exp 7tlzoL dteaBqaqa 

{ f / 2 . a  } x e x p  i dt d z j~( t ,z )qa~ (3) 

×exp{i~ f dt f d2z f ds f d2w~(z)M~°[q;t,z,s,w]~°(w)}. 
Here the j ' s  are the sources for the q's, which in turn parametrize the space of solutions 

of C = S -- 0 in .A/GIr2, i.e. the moduli space .3.4 of flat connections modulo gauge 
equivalence; we do not fix, however, the remaining global SU(N) symmetry to keep 
track of the non-abelianity. The integration domain is therefore the space Maps(S 1 , .A/l); 
the integration measure is Dq = I-L,~,t dqa~(t) and this restriction of the integral to the 

transverse sections to the orbits of the gauge group requires us to include the Jacobian 
of the map from the Lie algebra of the gauge group to the tangent space to .A4 in .A/G; 
this is the job done by the Berezin integration over the ghost fields. 

From (3) we read the Feynman rules: 
Propagators: 
i. Frozen gluon, exclusively time propagation excitation; 

a b  i b 
A+_(Xl -- X2) - 21~L~6 a e(t2 - -  t l ) t ~ ( 2 ) ( Z 2  - -  Z l ) e + -  , 

x i= (ti, Zi) E S 1 × T2; qai(t) =q~(t)q-iq~(t)  , 

e+_ = 1 = - e _ + ,  e++ = e__ = 0. 
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Fig. 6. Graphs for some processes at second and fourth order. 

For practical purposes we shall split this into "particle" and "anti-particle" propaga- 
tion: 

ab i b 
A T + _ ( X I  --  X2) = 4----~$2L2 ~ a O ( t  2 - t l )~(2) (Z2 -- Z l ) e + -  , 

~lab I X - -  = - -  T+-~ I x2) 6~bo(tl -- t2)&(2)(Z2-- Z~)e+_ 

i. Instantaneous ghosts: 

1 
A ~ , ( x l  - - x 2 )  = ~o2TS(tl - t2)6~b In Izl - z2l. 

Vertices: 
• a l i. Sources: j+ ( , z ); 

ii. Gluon-ghost vertex: tx2fabc(qC+(t)O+ + qC__ ( t )a_) .  

We shall now compute the contribution to the two-point Green function at second 
order in Perturbation Theory and to the four-point Green function at fourth order in 
Perturbation Theory of the graphs of Fig. 6 because of its pertinence to later work• In 
the first case, Feynman technology gives: 

Cv ~ab 
F ( 2 )  TT .a t 12+_ = ^ , 'J+( 1 , z l ) O ( t - - t l ) e + - O Z ~ l n l z l - - Z 2 1  

(4u(~L2T) 
×e_+3~_ 2 In [zl - z2[O(t2 - t ) j b ( t 2 ,  Z2), (4a) 

F(2) T$ Cvc~ab " " a ( h  z l ) O ( t  q ) ~ + - O _  In[z1 Z2I 
12+- ( 4 t z 2 L 2 T ) 2 J +  , _ z, _ 

Z2 ×e_+0+ In IZl z2[O(t2 - t ) j  ° _ (t2, z2) , (4b) 

where cv is defined by f a b c f a b d  = cvScd. A longer but similar computation for the fourth 

order graphs yields: 

F ( 4 )  TTTT _ / - ( 2 )  TT r , ( 2 )  TT (5a) 
4 + - - + -  -- - -  2 + - - -  2 + -  ' 

F ( 4 )  TTT£  _ F ( 2 )  TT r (2 ) lT .L  (5b) 
4 + - - + - -  -- - -  2 + - - - -  1 2 + -  " 

4. The central development of this work is the following: Consider an oriented knot 
C for which the "time" variable t is a Morse function in R 3. This means that C can 
be parametrized by z ( t ) ,  adapting the curve to the foliation of IR 3 by C,, in such a 
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tm . . . . . . . .  = C 

(a) (0) 

Fig. 7. Morse knot and its corresponding braid. 

way that the critical points at values a < tl < t2 < . . .  < tm < b are isolated and well 
ordered. The expectation value of the holonomy of a fiat connection in .M through C, 

the Wilson loop, is the key element of the analysis and given by the Functional Integral 

(W(C)) : i Dq f D~D~ HoIc (q )exp  (i,~LZCS[q]) 

× exp(i/z~ fa3x (~a(Z)Mabtq]~b(z)}), 

Holc(q)=TrPexp(/q) 

=TrPexp(/{dz(t) qa+(t)+dz(t)qa-(t)}) • (6) 

P means path ordering and we compute (W(C)) by series expansion: 

'( (W(C))=I+~.v T r P  q q 

, ( / / / / )  + ~  TrP  q q q q + . . . ,  

C C C C 

(7) 

the odd terms being zero because the tadpole graph gives no contribution. The goal is 
to show that (W(C)) is a topological invariant independent of continuous deformations 
of C. Any Morse knot such as C can be deformed by horizontal moves, which keep 
the critical points fixed, and vertical moves, interchanging or killing critical points, to a 
braid as shown in Fig. 7. In this form it is easier to compute (W(C)) and the strategy 
will first be to solve the easiest case and then to show independence with respect to those 
moves. We focus on two strands with one crossing to notice that a non-null contribution 
to the first term of the expansion in (7) comes from the graphs of Fig. 8 at second 
order in Perturbation Theory: 
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- -  q q = 4 64(/~o2LZT) 2 
2! TrP  - T  (s  

8~ 

x f / { :~(-l)~'az(t)-dw(s)z(t) -w(s) 
8f Bf" 

A f a b c ( - 1 ) a " '  d z ( t )  - d w ( s )  
z(t) w(s) J 

. O ( s - t )  ~ab 

(8) 

where app, are zero or one depending on the relative orientation of the two strands of 

BI: AT+ = A H = 1 and A H = A11 = 0. Multiplying by the "number of particles" in a 
box, L l T/7"r 3, and taking the limit when s tends to t such that s - t ~ 4 / T ,  we obtain 

(w(B'))ap.,= f / fobc) 

A ~ / ( - 1 )  a ' '  f~bc 
Z 

Igabc ( j:~ 1 ~ l:abc ( n 1 
=,~2ppt~,~ J,x2ppl~, ) ;  (9) 

the Kontsevich integrals appear as a "square root" of the expectation value of the Wilson 

loop in second order of Perturbation Theory and the Physics behind it is as follows: 

By exchanging a ghost pair emitted by q two different points of a braid at the same 

instant of time are correlated. Integrating along the braid crossings, orientations and 

combinatoric factors are accounted for and the structure of the braid is described. In 

fact one needs to consider only half the diagram and this explains the "square root" 

appearance of (9). In taking the square root, however, we could have chosen a "scalar" 

decomposition of (9), assigning a weight of x/~ to each vertex as the result of the 

combinatorics of the diagram rather than the "tensorial" decomposition where the role 

of the vertex is more evident. The point is that following Kontsevich we shall measure 
higher order contributions with respect to l(abc ldabc "'2PP" or, equivalently , we shall set -~2m,, 
equal to zero, e.g. by contracting with ~ab. 

A similar computation for a piece of a braid with two crossings, Fig. 8, yields at 

fourth order in Perturbation Theory: 

p p' p p' 

{a) (b) (c) (d) 

Fig. 8. Diagrams contributing to (W (Cs ) )  at lower orders in Perturbation Theory. Peculiar cases: resolution 
of a triple crossing, four ways, and close strands. 
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I l l / {  ' (tl)-dw(tl) (W(B l ))4,Q~t ~ -  ~ ( - - I  )ape, ( _  1)aee, d :  ( t l )  - w(t l )  

B; B;' B~ B~' 

dz ( t2 ) - d w (  t2 ) Cvt~ab t~cd ) A 
z(t2)  -- w(t2) 

x (_ l )ap , ,  ( _  1)aee, d z ( q )  - dw(h  ) 
Z(t l )  - W(tl) 

A d z  (t2) - dw( t2 ) . Cvt~ab t~cd ]? 0(t2 -- t l ) 
z(t2)  -- w(t2) J 

abcd 2 tdabcd ( B 2 ) . 
= K ' m  ( B )  • ,~ 4p'e' 

ptQ# pQ 
(10) 

It is interesting to notice here that all non-saturated anti-symmetric indices coming from 
the faOc's arising in the vertices and in Tr TaTOTCT a give no contribution because of the 

multiplication with the 8 ~° coming from propagators, and we shall take (10) as the first 

non-zero Kontsevich integral. At the next, sixth order, in Perturbation Theory, the Feyn- 
man Rules speak of three kinds of combinatoric factors: (1) The FOc's are multiplied 
by t~ab's, giving a zero contribution. (2) There is one  f abc  left, as in Icabc t•l ), which .x2pp~ ~ u 
is set to zero for the same reason. (3) There are only t~ ab factors giving a non-zero 

contribution. 
We can now give the formula for the general case, a braid B m with m crossings: 

( W  ( B m )  )2mPiP,i...p,,p,m k -a,br''a.,b., lgaibl...a,,b,,, . . . . . .  : '  (Bm) "" e,...e" (Bin) 
2m p~ll, ' .p,,, 2m P' I'" .e',, ' 

Kaibi'"a'b'(Bm)= f X Cv t~albi d z ( t i ) - d w ( t i )  
e,...:' 2 -~ / ( -1 )ap : ' '  " Z(ti) -- w(ti) 2m p# I ...ptm i=l 

II <t2<" "<~lm 

(11) 

This extends immediately to a knot CB., formed by joining the starting and ending points 
of  B m, Fig. 7b, and provides an invariant for the knot even though the integration is only 

carried out between the absolute minimum and maximum values of t, modulo b - a, a 

and b at the knot, because the rest of the holonomy is irrelevant. 

To prove that (W(C)}2m is equal to (W(Bm))2m if C is any Morse knot that can 

be obtained from C8,, by continuous deformations, we refer to Ref. [ 1 ]. We briefly 
comment on a physical interpretation of the arguments in [ 1 ]. If  An is the subspace of 
grade n in the space of extended knots the splitting given by the boundary operator 

V W ( C n )  = W ( C : _ l )  - W ( C n - _ l ) ,  

where W(C,)  is the value of some functional on An, the element Cn is associated with 
the ghost propagation and due to the fact that an m step descent is required to get 
Ao from Am, we find the natural invariant in the 2mth order of Perturbation Theory. 
New contributions arise at any 2mnth order and we obtain a series expansion of the 
Witten-Jones invariant answering in the affirmative a question posed in [ 1 ] about the 
possibility of  approximating this invariant in terms of Vassiliev invariants: 
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WJm( CB m) = (W ( CB., ) )Zm p l...e.} , (12) 
P 1 " ' ' P  m 

O O  

WJ(C.- )= Z I[WJm(C.. , )]"  =exp{iWJm(Co.,)}. 
n--O 

To deform C8., to any C also in Am and still a Morse knot two kinds of  moves are 

allowed: 

(a) Horizontal moves where the critical points occur for the same values of  t. Math- 

ematically, it is shown in [1] that K2m(CB,,) = K2,,,(C) using the fact that: 

am'm= E SiSjOiGj('Oij' (13) 
1 ~i~j~2m 

12~= ½[q+i,q+j], oJij =d l o g l z i -  zjl, sisj = ( - 1 )  api~J , (14) 

is a flat connection. Physically ~ comes from the frozen gluons emitting the ghost pair 

at ti and t j, mij is due to the infinite speed propagation of  the ghosts. No wonder the 

invariance under horizontal deformations, they do not notice the distance!. 

(b) Vertical moves. There are two possibilities for obtaining apparently distinct Morse 

knots. In the first case some of  the minima and maxima are exchanged. The Kontsevich 

integrals are the same. Check: 1. Deform the initial knot to another where the critical 

points to be exchanged are very sharp by horizontal moves. 2. Compute K2m to see that 

the contribution of  the needles is negligible. 3. Reject the needles. This process does not 

change the integrals. In the second case consecutive maxima and minima are killed by 

stretching the piece of  the curve containing them. Because the number of  critical points 

cannot be changed a correction must be made: let Cr be a Morse knot with r-maxima 

in Am and Co the Morse knot in A0 with two maxima. The quantity 

~'2m (Cr) =K2m(Cr)/K2m(Co) 

is also invariant under these moves. 

It would be interesting to prove that ~Tm+lKzm(C) = 0 for C C Am. Consider 

VmK2m(C) = K2m(C +) - K2m(C- ) ,  

where C ± C Am-l and are identical to C except that one self-intersection has been 

solved in an over (under)-crossing. Horizontal deformation freedom allow us to choose 

C ± as in Fig. 8d. One thus has that: 

K~ p,...p., ( C + ) - K .  p~...e., ( C - ) =  / --dz-dWK, 
Z t l I  p t  I . . . p t m  z n l  p i  1 . . . p t m  Z - -  W 

Iz-wl<~ 

which is 2~riK because of  the residue theorem. K is a constant, the contribution of  the 

rest of  the diagram, while z and w are very close and exchanged, and the proposition 

follows. 
The case when ti = ti+! is more involved. It corresponds to a triple self-intersection, 

which can be solved as drawn in the diagrams of  Fig. 8c in four different ways: 
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[1,2,3,4], [2,1,3,4] and [1,2,4,3] for [a,  b, c, d] plus the simplest diagram not labelled 
in the figure. Therefore the four term relation (0) of  Vassiliev Theory is no more than 

the identical contribution of  the diagrams corresponding to ghost exchange between two 

pairs o f  strands, in which a triple crossing is solved, either intertwined or not in this 
Field Theoretical setting. 

5. We have not touched upon the problem of  divergences: when z gets too close to 
w infinities arises. Fortunately these are harmless for Knot Theory because we have set 
the dangerous graphs down to zero. In a broader context we can address the issue as 

a Renormalization matter and for the sake of completeness we sketch a proof  of  the 

renormalizability of  Chern-Simons theory in this Hamiltonian form. We focus on the 

effective potential, the functional generatrix of  the one-particle irreducible graphs. For a 

constant external field of  the form qa( t )  = e " t ~ t ;  this is up to one loop order in the 
1//,2-expansion: 

Veef[°'2] = 2/'*2°'2 + (2¢r 2) " Z ~nn cL, 
n=l 

where 0 -2 is o .2 = 0a~7~, The first term is due to the Chern-Simons action of  the external 
field acted upon the Green function of  the operator v / - d 2 / d t  2, 

q ~ ( t )  = e~,~,gl~, • It - TI 1/2. 

The second term is the sum of  the diagrams with n vertex insertions of  e,,mq,~ , in 

momentum space. Subtracting the contribution of  0-2 = 0, which is infrared divergent, 
we have: 

Veff[o" ] - - 2 / - ~ 0 - 2 +  ( - -~)21n l + c v ~ - f f  . 

However, one still has the need of  an ultraviolet cut-off to find the regularized effective 
potential 

0 -2 / ,  Cv0- 2 ) 
V~[ 0 -2 ] = 2/z2o "2 + cv 4--7 ~,n T - 1 / . 

The coupling constant is defined at an arbitrary renormalization point 

d2V R Cv cvM 2 cv 
MS = 4/~2 = 4p'°2 + ~ In ~ + --'rr 

and, choosing the bare coupling constant to be 

11,2o k + Cv cvM 2 
=--~r ~ l n  ~ , k E Z ,  

everything is finite at this order in the loop expansion: 

0 - 2 ( g v 0 - 2 )  V£[0- 21 k °'2 + In - 3  = 
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The famous shift of  Chern-S imons  theory is disguised in the finite renormalization: 

k + cv d2VeRff M 2 . 

149 

From the very beginning it was obvious that our model is a theory of  fermions interacting 

with an external field. No wonder that we met the effective potential of  the Gross-Neveu 

model. Also,  according to the results of  Ref. [4] ,  higher orders of  loop expansion do 

not alter our conclusion about the finiteness of  the model, nor are other corrections to 

K needed. 
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